Category Title
This research addresses the growing need to better understand the mechanisms through which engine-out formaldehyde is formed in 2-stroke cycle large bore natural gas engines. The investigation is performed using a number of different in-cylinder sampling techniques implemented on a Cooper-Bessemer GMV-4TF 4-cylinder 2-stroke large bore natural gas engine. The development and application of various in-cylinder sampling techniques is described. Three different types of valves are utilized: (1) a large sample valve for extracting a significant fraction of the cylinder mass; (2) a fast sample valve for crank angle resolution, and (3) check valves for sampling during expansion at mid-stroke and the blowdown pulse. Formaldehyde in-cylinder sampling data are presented that show formaldehyde mole fractions at different times during the engine cycle and at different locations in the engine cylinder. The test results indicate that the latter part of the expansion process is a critical time for engine-out formaldehyde formation. The data show that significant levels of formaldehyde form during piston and end-gas compression. Additionally, formaldehyde is measured during the combustion process at mole fractions 5 to 10 times higher than engine-out formaldehyde mole fractions. That formaldehyde is nearly completely destroyed during the final part of the combustion process. The test results provide insights that advance the current understanding and help direct future work on formaldehyde formation.
Your Price $195.00
List Price $195.00